Diffusion-limited aggregation with power-law pinning.

نویسندگان

  • H G E Hentschel
  • M N Popescu
  • F Family
چکیده

Using stochastic conformal mapping techniques we study the patterns emerging from Laplacian growth with a power-law decaying threshold for growth R(-gamma)(N) (where R(N) is the radius of the N-particle cluster). For gamma>1 the growth pattern is in the same universality class as diffusion limited aggregation (DLA), while for gamma<1 the resulting patterns have a lower fractal dimension D(gamma) than a DLA cluster due to the enhancement of growth at the hot tips of the developing pattern. Our results indicate that a pinning transition occurs at gamma=1/2, significantly smaller than might be expected from the lower bound alpha(min) approximately 0.67 of multifractal spectrum of DLA. This limiting case shows that the most singular tips in the pruned cluster now correspond to those expected for a purely one-dimensional line. Using multifractal analysis, analytic expressions are established for D(gamma) both close to the breakdown of DLA universality class, i.e., gamma less, similar 1, and close to the pinning transition, i.e., gamma greater, similar 1/2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beyond diffusion-limited aggregation kinetics in microparticle suspensions.

Aggregation in nondiffusion limited colloidal particle suspensions follows a temporal power-law dependence that is consistent with classical diffusion limited cluster aggregation models; however, the dynamic scaling exponents observed in these systems are not adequately described by diffusion limited cluster aggregation models, which expect these scaling exponents to be constant over all experi...

متن کامل

Fractal Aggregation Growth and the Surrounding Diffusion Field

Silver metal trees grow and form a forest at the edge of a Cu plate in the AgNO3 water solution in a two dimensional(d = 2) cell. The local structure of the forest is similar to that of the diffusion-limited aggregation (DLA), but the whole pattern approaches a uniform structure. Its growth dynamics is characterized by the fractal dimension Df of DLA. Time-dependence of the tip height is found ...

متن کامل

Slippery diffusion-limited aggregation.

Colloidal particles that interact through strong, short-range, secondary attractions in liquids form irreversible "slippery" bonds that are not shear-rigid. Through event-driven simulations of slippery attractive spheres, we show that space-filling fractal clusters still emerge from the process of "slippery" diffusion-limited aggregation (DLA). Although slippery and classic DLA clusters have th...

متن کامل

Diamond Aggregation

Internal diffusion-limited aggregation is a growth model based on random walk in Z. We study how the shape of the aggregate depends on the law of the underlying walk, focusing on a family of walks in Z for which the limiting shape is a diamond. Certain of these walks – those with a directional bias toward the origin – have at most logarithmic fluctuations around the limiting shape. This contras...

متن کامل

سینتیک آزاد شدن فسفر و هم‌بستگی ضرایب مدل‌های سینتیکی با برخی ویژگی‌های خاک و شاخص‌های گیاهی در تعدادی از خاک‌های همدان

  Phosphorus (P) after nitrogen limits agricultural production in most region of the world. Information about P release rate is limited in Hamadan soils. The objective of this research was to study P release in 10 soils from Hamadan province by successive extraction with 0.5 M NaHCO over a period of 1752 h and the correlation of P release characteristics with soil properties and corn plant (Zea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 69 1 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2004